AP Calculus BC

Chapter 6 Test Review Outline

- 1. Test Format
 - a. Calculator section: 3 multiple choice, 5 free-response
 - b. Non-calculator section: 9 multiple choice, 3 free-response
- 2. Methods of Integration (definite and indefinite)
 - a. (6.1) Basic methods (w/o u-sub) power rule, exponentials, trig (6), inverse trig
 - b. (6.2) U-substitution
 - c. (6.3) Integration by parts
 - i. $\int u dv = uv \int v du$
 - ii. LIPET: used to help you pick the *u*
 - iii. PE or PT or ET*: tabular integration
 - d. (8.4) Partial fractions: with or without the cover-up method
- 3. Separable differential equations Section 6.1
- 4. Slope Fields (6.1)
 - a. Match a slope field to its differential equation/solution equation
 - b. Draw a slope field given a differential equation (non-calculator)
- 5. Exponential Growth/Decay
 - a. Rate of change of a quantity is proportional to the quantity: $\frac{dy}{dt} = ky$
 - b. Particular solution: $y = y_0 e^{kt}$ (k > 0 = growth, k < 0 = decay)
 - c. Half-life: $t = \frac{\ln(\frac{1}{2})}{k}$; Doubling time: $t = \frac{\ln(2)}{k}$
 - d. Newton's Law of Cooling: $T T_s = (T_0 T_s)e^{-kt}$
- 6. Logistic Growth Model (P = population, M = carrying capacity)
 - a. Rate of change of a population is proportional to *P* and $M P : \frac{dP}{dt} = \frac{k}{M}P(M P)$
 - b. Population grows fastest when P = M/2
 - c. Particular solution: $P = \frac{M}{1 + Ae^{-kt}}$
- 7. Euler's Method
 - a. Used to approximate the solution curve for a differential equation
 - b. Assume $\frac{dy}{dx} = f'(x, y)$, dx = step size
 - c. $y_{n+1} = y_n + f'(x_n, y_n)dx$

AP Calculus BC

Chapter 6 Test Review Outline

- 1. Test Format
 - a. Calculator section: 3 multiple choice, 5 free-response
 - b. Non-calculator section: 9 multiple choice, 3 free-response
- 2. Methods of Integration (definite and indefinite)
 - a. (6.1) Basic methods (w/o u-sub) power rule, exponentials, trig (6), inverse trig
 - b. (6.2) U-substitution
 - c. (6.3) Integration by parts
 - i. $\int u dv = uv \int v du$
 - ii. LIPET: used to help you pick the *u*
 - iii. PE or PT or ET*: tabular integration
 - d. (8.4) Partial fractions: with or without the cover-up method
- 3. Separable differential equations Section 6.1
- 4. Slope Fields (6.1)
 - a. Match a slope field to its differential equation/solution equation
 - b. Draw a slope field given a differential equation (non-calculator)
- 5. Exponential Growth/Decay
 - a. Rate of change of a quantity is proportional to the quantity: $\frac{dy}{dt} = ky$
 - b. Particular solution: $y = y_0 e^{kt}$ (k > 0 = growth, k < 0 = decay)
 - c. Half-life: $t = \frac{\ln(\frac{1}{2})}{k}$; Doubling time: $t = \frac{\ln(2)}{k}$
 - d. Newton's Law of Cooling: $T T_s = (T_0 T_s)e^{-kt}$
- 6. Logistic Growth Model (P = population, M = carrying capacity)
 - a. Rate of change of a population is proportional to *P* and $M P : \frac{dP}{dt} = \frac{k}{M}P(M P)$
 - b. Population grows fastest when P = M/2
 - c. Particular solution: $P = \frac{M}{1 + Ae^{-kt}}$
- 7. Euler's Method
 - a. Used to approximate the solution curve for a differential equation
 - b. Assume $\frac{dy}{dx} = f'(x, y)$, dx = step size
 - c. $y_{n+1} = y_n + f'(x_n, y_n)dx$